Feedback between motion and sensation provides nonlinear boost in run-and-tumble navigation

نویسندگان

  • Junjiajia Long
  • Steven W. Zucker
  • Thierry Emonet
چکیده

Many organisms navigate gradients by alternating straight motions (runs) with random reorientations (tumbles), transiently suppressing tumbles whenever attractant signal increases. This induces a functional coupling between movement and sensation, since tumbling probability is controlled by the internal state of the organism which, in turn, depends on previous signal levels. Although a negative feedback tends to maintain this internal state close to adapted levels, positive feedback can arise when motion up the gradient reduces tumbling probability, further boosting drift up the gradient. Importantly, such positive feedback can drive large fluctuations in the internal state, complicating analytical approaches. Previous studies focused on what happens when the negative feedback dominates the dynamics. By contrast, we show here that there is a large portion of physiologically-relevant parameter space where the positive feedback can dominate, even when gradients are relatively shallow. We demonstrate how large transients emerge because of non-normal dynamics (non-orthogonal eigenvectors near a stable fixed point) inherent in the positive feedback, and further identify a fundamental nonlinearity that strongly amplifies their effect. Most importantly, this amplification is asymmetric, elongating runs in favorable directions and abbreviating others. The result is a "ratchet-like" gradient climbing behavior with drift speeds that can approach half the maximum run speed of the organism. Our results thus show that the classical drawback of run-and-tumble navigation-wasteful runs in the wrong direction-can be mitigated by exploiting the non-normal dynamics implicit in the run-and-tumble strategy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stochastic model for directional changes of swimming bacteria.

In this work we introduce a stochastic model to describe directional changes in the movement of swimming bacteria. We use the probability density function (PDF) of turn angles, measured on tumbling wild-type E. coli, to build a Langevin equation for the deflection of the bacterial body swimming in isotropic media. We have solved this equation analytically by means of the Green function method a...

متن کامل

Using the Adaptive Frequency Nonlinear Oscillator for Earning an Energy Efficient Motion Pattern in a Leg- Like Stretchable Pendulum by Exploiting the Resonant Mode

In this paper we investigate a biological framework to generate and adapt a motion pattern so that can be energy efficient. In fact, the motion pattern in legged animals and human emerges among interaction between a central pattern generator neural network called CPG and the musculoskeletal system. Here, we model this neuro - musculoskeletal system by means of a leg - like mechanical system cal...

متن کامل

The role of tumbling frequency and persistence in optimal run-and-tumble chemotaxis

One of simplest examples of navigation found in nature is run-and-tumble chemotaxis. Tumbles reorient cells randomly, and cells can drift toward attractants or away from repellents by biasing the frequency of these events. The post-tumble swimming directions are typically correlated with those prior, as measured by the variance of the reorientation angle distribution. This variance can range fr...

متن کامل

Numerical simulation of in-cylinder tumble flow field measurements and comparison to experimental results

This paper presents a comparison between measured and predicted results of the in-cylinder tumble flow and the flow coefficient generated by a port-valve-liner assembly on a steady-flow test bench. In this study, computational fluid dynamics (CFD) methods were employed to gain further insight into characteristics of an engine. The purpose was to advance understanding of the stationary turbulenc...

متن کامل

Periodic solution for a delay nonlinear population equation with feedback control and periodic external source

In this paper, sufficient conditions are investigated for the existence of periodic (not necessarily positive) solutions for nonlinear several time delay population system with feedback control. Nonlinear system affected by an periodic external source is studied. Existence of a control variable provides  the extension of  some previous results obtained in other studies. We give a illustrative e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017